
 TreeMig

Technical documentation
Developers:

Heike Lischke, Thomas Löffler, Niklaus Zimmermann, David Böhm

Dynamic Macroecology, Swiss Federal Institute of Forest, Snow and Landscape Research

WSL

This is a documentation of the core TreeMig model code.

Table of Contents

1 Technical and code documentation ..2

1.1 Calling sequence of routines ... 2
1.1.1 Preparation of simulation .. 2
1.1.2 Creating dispersal kernel.. 3
1.1.3 Time loop.. 4
1.1.4 Spatial loop ... 4
1.1.5 FFT seed dispersal .. 5
1.1.6 Local dynamics in one time step .. 6
1.1.7 Local forest dynamics ... 7

1.2 More details .. 8
1.2.1 Netcdf handling .. 8
1.2.2 Sequential and parallel implementation ... 8

1.2.2.1 Parallelisation ... 8
1.2.3 Preprocessing ... 8
1.2.4 Initialization .. 8
1.2.5 Spin up .. 9
1.2.6 How to apply TreeMig .. 9
1.2.7 Technical information .. 9

Tree Migration
model

1 Calling sequence of routines
The black bordered cells in the graphs indicate links to other graphs. For more details, see the

code documentation of the FORTRAN files.

1.1 Preparation of simulation

Figure 1: Preparation and start of the simulation

1. The program is started in StartTreeMig, which sets the flags and setting for the

parallel computing and calls the TreeMig model.

2. The control settings are read in from a control file (ReadControlPars) whose name

and path is given in the command line when calling TreeMig and read in in

ReadControlParsAndInitFiles.

3. The output files are prepared (ReadControlParsAndInitFiles, PrepareOutput,

PrepareNetcdfOutput), i.e. opened and given a header.

4. Species parameters (GetSpc) and immigration data (ReadImmigrationData) are

read in, further species properties are derived from them and stored.

5. Also the dispersal kernels and their Fourier transformations

(CalculateAndStoreDispersalKernelOfSpecies) are created (Figure 2).

6. State variable and help grids are allocated and initialized (AllocateAreas).

7. The input of the bioclimate driver data is prepared (PrepareBioclimInput)

8. Height and light dependent species properties are derived from the parameters or

initialized and stored (InitAndSetConstHeightClProps).

9. “Inoculation”: The simulation is run for a given inoculation time with seeds

available everywhere either in the entire simulation domain or a subarea (1st call of

TimeLoop). This is necessary to have seeds and even trees available, if the

simulation is started from bare ground.

10. Optional: Initializing the state variables with a state snapshot (statefile), usually

stemming from a previous simulation (ReadState)

11. Migration simulation: This is the actual simulation run with dispersal (2nd call of

TimeLoop)

12. The files are closed.

StartTreeMig

TreeMig

ReadControlPars

AndInitFiles

ReadControlPars

GetSpc

ReadImmigration

Data

CalculateAndStore-
DispersalKernelOfS

pecies

InitAndSetConstHe
ightClProps

BiomassFromDBH

DBHFromHeight

LAIFromDBH

PrepareNetcdf
Output

PrepareOutput

OpenAndWriteHea
der(Light)

AllocateAreas
PrepareBioclimInp

ut

CheckDriverNames

ReadNewBioClim

ReadState TimeLoop

1.2 Creating dispersal kernel

Figure 2: Creating the dispersal kernel

1. The memory for the kernel of the species as well as for the FFT-transformed kernel

is allocated

2. The kernel is calculated

a. Either as double kernel consisting of a weigthed sum of two single kernels

with different parameters

b. Or as a single kernel, that is calculated (KernelValue) on a finer resolution

and then summed up to get the actual resolution, and finally cut and

normalized.

3. For the later FFT the dimensions of the small extended and large extended areas are

set in SetDimsForFFT, where the small extended area has dimensions of the next

power of 2, and the large one of the overnext power of 2.

4. The kernel is FFT transformed

CalculateAndStoreDispersalK
ernelOfSpecies

AllocateSpecKernel

AllocateSpecTransformedKer
nel

DispersalKernel

DoubleKernel SingleKernel

AllocateKernel CenterToCenterValue KernelValue

SetDimsForFFT
CalculateKernelTransformati

on

1.3 Time loop

Figure 3: Time-Loop

In the time loop over the simulation time (Figure 3), within each time step

1. The new bioclimate for this time is read in (ReadNewBioclim). Non read-in cells are

marked by a Null value and later in the simulation masked out. The read-in values are

assigned to the correct places in the structure newBioClim. If no value is given for a

driver other than DD, WIT and DrStr, then default values are assigned

(AssignReadOrDefaultDriver).

2. The dynamics of the state variables in the entire grid are calculated

(SpatialDynOneTimeStep, see below).

3. The current state is written out, if the simulation is at a time point where this is wished

(WriteState).

1.4 Spatial loop

Figure 4: Spatial dynamics in one time step

TimeLoop

ReadNewBioClimIfNe
cessary

ReadNewBioClim

AssignReadOrDefault
Driver

WriteState

WriteStateFile

WriteStateLoops

SpatialDynOneTimeStep

SpatialDynOneTimeStep

GetEnvFactors

GetBioClimSimple

LocalDynOneTIme
Step

ReportNETCDF SeedRainByFFT UpdateNewSeeds
SeedsFromOutsSimRegi

on

In the spatial loop (SpatialDynOneTimeStep) the dynamics of the state variables in the entire

grid for this time step are calculated.

1. There, in a loop over the grid cells

a. the environmental factors (DD, WiT, DrStr, brwpr, disturb, germDrought) are

extracted from newBioClim (GetEnvFactors)

b. and the local dynamics are calculated (LocalDynOneTimeStep)

2. Optionally, the calculation of dispersal by fast Fourier transform is calculated

(SeedRainByFFT, Figure 5, cf. Error! Reference source not found.)

3. The seeds in the seed bank are updated

4. Optionally, the Netcdf output file is updated with the results for this time

1.5 FFT seed dispersal

Figure 5: FFT seed dispersal

The FFT seed dispersal consists of

1. Transforming the kernel by

a. shifting it

b. Reordering it

c. doing the GFT transformation (GFT_Set, -Do, -End)

2. The convolution of the kernel with the seed production is done in each time step in

GFTConvolution2D.

a. the seed production area is buffered at the top and right by stripes of the kernel-

radius and extended to dimensions of the next power of two (intermediate area),

so that the original simulation area is in the 0,0, corner.

b. Then this intermediate area is put to the corner of the large extended area that

has dimensions double to those of the intermediate area.

c. This large area is then FF transformed, however indicating the dimensions of

the intermediate area.

d. The resulting FF transformed seed production area is multiplied with the FF

CalculateKernelTransfor
mation

ShiftKernelToEven GFT2DTransformKernel

ReorderKernelForGFT

GFT_Set_fft, GFT_Do_fft, GFT_End_fft

SeedRainByFFT

SeedRainByFFTForThisSpec

GFT2DConvolution

transformed kernel

e. and then the product is back-transformed. Very low values are interpreted as

noise and are set to zero.

f. Finally, the original area is cut out of the result that is on the size of the

intermediate area.

1.6 Local dynamics in one time step

Figure 6: Local dynamics in one time step

1. the environmental dependencies are determined based ont environmental factors (dd,

wiT, drstr, brwpr)

2. the current state is fetched and stored to thiscell (remainder of the parallel

implementation)

3. the local forest dynamics is calculated

4. and stored back

5. seeds ared dispersed (if brute force and dispersal is on)

a. all sink cells around the source cell within the range of the species's dispersal

kernel are reached and

b. the probability of seeds landing there is determined from the dispersal kernel

c. According to the boundary conditions (absorbing, cyclic,...) it is determined

whether the sink cell is the correct one

d. The number of seeds landing in the sink cell is calculated either as a binomial

distribution with the produced number of seeds (set to the next lower integer

number) and the probability

e. or as a fraction of the produced seeds

f. This number of seeds landing in the sink cell is added to all seeds landing there.

6. the current results for this cell are written out (reported)

LocalDynOneTImeStep

CalcCurrentDep
FunctsInCell

KillAllTreesAndS
eeds

StoreCellStateTo
ThisCell

LocalForestDyna
mics

StoreThisCellSpecSt
atesToCell

SeedsDispersedFrom
ThisCellBoundaryCo
nditions Interact.f90

SeedsDispersedFromThis
CellAndSpecBoundaryCo

nditions Interact.f90

BoundaryCondit
ions Interact.f90 DrawFromDistri

DrawFromPoissonDist

DrawFromNormalDist

DrawFromRandDist

Report

1.7 Local forest dynamics

Figure 7: Local forest dynamics

1. current cell is initialized for this time step

a. numbers of trees in height classes and ingrowth

b. light and (total) leaf area structures

2. disturbance mortality is calculated

3. then for each height class from top to bottom

4. the light distribution is calculated (LfCalc)

5. for each species

a. the produced seeds are determined (SeedProd)

b. in each light class

i. mortality and growth are determined

ii. within these subroutines the current numbers are updated

6. the total seed production per species is calculated

7. the self regulation of the species on the level of seeds ist determined

8. immigration, if there is any, is evaluated

9. the regeneration, i.e. germination and competition for space is determined

LocalForest
Dynamics

LfCalc
NormDist

SeedProd

Mort

Grow
SumSpecsSeedPr
odsOverHeights

SelfRegulation

SpecImmigration

RegenContLightDep

2 More details

2.1 Netcdf handling
Optionally the output of TreeMig can be a single, multidimensional Netcdf-file.

In PrepareNetcdfOutput the output Netcdf file is prepared. It is created, the global attributes

of the file are defined. Time, x,y. and species axes are defined with their attributes. The

different output variables are defined, allocated and initialized. In ReportNETCDF, all

output data of one year are added to the netcdf output file. The values have been stored

before to the _NC variables (e.g. Biomass_NC) in Report, which has been called for each cell

in the same time step before

2.2 Sequential and parallel implementation
TreeMig is in its standard use sequential, in particular the version used in the TM-Package.

There was a working parallel version several years ago, but the parallel version has not been

tested lately, in particular not in combination with the seed dispersal by FFT. So, it cannot be

used as such. However, to simplify experienced users the parallel implementation, we have

left the corresponding parts and files in the code.

2.2.1 Parallelisation

The main idea of the parallelization is that the local and spatial simulation is run in parallel

on different (overlapping) stripes of the simulation area on different “slave” processors. A

“master” processor a) reads in the driver data and b) collects the seeds passing over the stripe

boundaries and distributes both to the correct stripes and their processors. The parallelization

is based on MPI (message passing interface). The relevant parts and settings are

activated by a compiler preprocessor, with the compiler flags “-DPARALLEL” and “-

DWITHMPI”. The parallel version is controlled by compiler directives and preprocessor

commands, i.e. te lines starting with # and the blocks between them. The files in which they

appear must end with F90 instead f90. The preprocessor commands and blocks are currently

outcommented. The additional files only needed in the parallel version are located in the

folder “CurrentlyNotNeeded/MPI”.

2.3 Preprocessing
In a preprocessing step, bioclimatic variables for each year and cell are calculated: degree-

day sum > 5.6°C, coldest monthly mean, and a drought index based on water holding

capacity, slope, aspect, monthly mean temperatures, and precipitation sums (cf. Bugmann and

Cramer 1998). This is now handled by the R-package and GUI.

2.4 Initialization
At the beginning of each simulation run, all grid cells of the landscape are initialized with the

stockability (0, 1) from an external input file. Simulations can either start from an empty

landscape (without any trees present), or from an already forested landscape. In the latter

case, the state variables have to be provided in a state text file. For the start in an empty

landscape, the first a user defined number years are run with global seed input and without

dispersal (inoculation).

2.5 Spin up
The easiest way for a spin up is to run a simulation over or longer than the spin up period,

and to write out a statefile at the end of the spin up period. Subsequent simulations, e.g. for

different scenarios can then be started from this statefile.

2.6 How to apply TreeMig
The compiled application must be located in a folder with subfolders E (containing the

bioclimate files), P containing the species parameter files, C containing the control files, and

subfolders R and S for writing the results and statefiles, respectively. The simulation is then

controlled by the control file, which specifies the simulation settings and the input files for

bioclimate, species parameter and the state- and immigration filexs, if used.

2.7 Technical information
The model is written in Fortran90/95, and can be compiled by GFortran via a makefile. It

consists of 63 files, containing 90 subroutines and functions, and ca 15000 lines of code (with

comments). Currently, compiled applications are available for WINDOWS and MacOS.

The Fast Fourier Transforms are performed using the GFT (General Fourier Transform)

package v1.0.0 of Jalel Chergui, formerly at IDRIS, France. The parts of the package

required for TreeMig are included in the TreeMig code.

The Fortran Netcdf library netcdff is linked statically to the model.

	1 Calling sequence of routines
	1.1 Preparation of simulation
	1.2 Creating dispersal kernel
	1.3 Time loop
	1.4 Spatial loop
	1.5 FFT seed dispersal
	1.6 Local dynamics in one time step
	1.7 Local forest dynamics

	2 More details
	2.1 Netcdf handling
	2.2 Sequential and parallel implementation
	2.2.1 Parallelisation

	2.3 Preprocessing
	2.4 Initialization
	2.5 Spin up
	2.6 How to apply TreeMig
	2.7 Technical information

